Sabtu, 15 Desember 2012

Aljabar Matriks

Matriks memungkinkan kita untuk :

  • menyatakan sistem persamaan lebih ringkas (Ax = d)
  • mengetahui apakah ada solusi tunggal atau tidak
  • mendapatkan solusi itu (jika memang ada)

However, matrix is applicable to linear-equation systems only.
Yet a nonlinear model can be transformed into a linear model.

y = axà log y = log a + b log x

A matrix that contains m rows and n columns is said to be of dimension m x n.
 In the special case where m = n, the matrix is called a square matrix.
Some matrices may contain only one column such as x and d and called column matrix.
 When there is only one row, it is called row matrix.


Operasi Matriks


Two matrices A = (aij) and B = (bij)
are said to be equal  if aij = bij

  • Addition (commutative and associative)
A + B = B + A
(A + B) + C = A + (B+ C)

  • Subtraction
A – B

  • Scalar Multiplication : k A
  • Multiplication of matrices
  • m x n x B p x q can be done only  if n = p and will result in C m x q
  •  (not commutative but distributive and associative)


AB ≠ BA
but (AB) C = A (BC)

and A (B+C) = AB + AC ,
(B+C) A = BA + CA

Tidak ada komentar:

Posting Komentar